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A PATTERN-SYNTHESIS PROCEDURE FOR REGULAR
PLANAR ARRAYS

INTRODUCTION

Of the voluminous literature on antenna-pattern synthesis, essentially all of it is
devoted to one-dimensional pattern functions. That is, the pattern function is defined in
only one dimension, as is the case for a line-source aperture, or it varies in only the radial
dimension, as is the case for an aperture excitation with circular symmetry [1-3]. In the
case of a planar array the two-dimensional illumination has generally been assumed to be
separable. In a synthesis procedure for hexagonal arrays, Goto has applied the excitation
values for a linear array to the hexagonal array [4]. The techniques used for the synthesis
of linear-array patterns differ markedly from those used for planar arrays. For the linear
array, synthesis usually depends on the control of the zeros of the pattern function. No
similar treatment of the zeros of planar-array radiation patterns has been reported.

Iterative computational techniques have been applied increasingly to both linear and
planar arrays, and one is tempted to follow the computational rather than the analytical
path [5,6]. Nevertheless the paucity of analysis of planar arrays leads us to hope that some
analysis will, if nothing more, provide an advantage in the application of the computational
iterative procedures.

The general objective in this report is to establish a starting point for the synthesis of
radiation patterns from symmetric hexagonal arrays. Before addressing specific objectives,
we will introduce a concept which relates the synthesis technique to the number of degrees
of freedom available in the array configuration. In general an array of N radiators has N - 1
independent complex parameters available in its aperture illumination. This is readily
grasped by assigning unit voltage excitation to any one of the elements and allowing the
remaining elements to assume independent voltages. In many cases symmetry constraints
reduce the number of independent complex parameters available to the designer. For
example a symmetric linear array with an even number of elements has N/2 - 1 independent
complex parameters.

A very general synthesis procedure will use many or even all of the available inde-
pendent parameters available in a given array. For example, if we wished to specify the far-
field complex voltage at N evenly spaced locations, we would make use of all N - 1 para-
meters, and the synthesis procedure would be a Fourier transform. At the other extreme, if
we wished to obtain maximum gain from a linear array, there would be no variable para-
meter in the synthesis procedure: All element voltages are always unity. Another example
is the linear array with voltage excitation proportional to the binomial coefficients. This
synthesis produces antenna patterns with no sidelobes. Again, once N is specified and the
voltage on any element is picked, the voltages on all other elements are automatically
determined.

Manuscript submitted October 2, 1979.
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We will refer to a general procedure that uses all N - 1 parameters as having N - 1
degrees of freedom. Procedures with no variable parameters are procedures with zero
degrees of freedom. In this report we will derive synthesis procedures for hexagonal arrays
which have zero and one degree of freedom. These are intended as starting points for more
general procedures with a higher number of degrees of freedom.

ARRAY AND PATTERN-FUNCTION GEOMETRY

Figure 1 illustrates the simplest of the hexagonal arrays treated in this report. The
array elements are on a regular triangular lattice. The array excitation coefficients are
constrained to be real, positive, and symmetric such that rotation of the array through any
multiple of 60° and also mirror imaging through any of the six planes of symmetry leaves
the excitation coefficients unchanged. A larger array is formed by adding hexagonal rings
of elements to a smaller array. Thus the next larger array after the seven-element array of
Fig. 1 contains 19 elements. In general, if the number of elements on one side of the
hexagon is n + 1, or in other words in the number of hexagonal rings is n, the number of
elements is the array is

N = 3n2 + 3r + 1.

The elements of the array of Fig. 1 are on an infinite lattice which can be defined by
the set of vectors

Pmn ma1 +na 2 ,

2sal-- xO

and

a2 = K0 +831,

where al and a2 are base lattice vectors, x0 and yo are unit x and y vectors, and m and n are
integers.

Because of the symmetry constraints the number of independent parameters is a small
fraction of the number of elements in the rings of the array, varying from 1/6 in the case of
the smallest arrays to 1/12 for a large array. Table 1 lists the number of rings, the number of
independent parameters, and the total number of elements for n = 1 through 9.

Figure 2 illustrates the grating-lobe pattern for the hexagonal array. The coordinates
are proportional to the cosines of the angles to a vector in the direction of plane wavefront
propagation, the angles being measured from the x and y axes of Fig. 1. The major lobes
(grating lobes for an infinite lattice) are on a regular triangular (hexagonal) lattice, with the
main lobe located at 0, since the array excitation is in phase, and with grating lobes at 0",
0 ", 0 '", etc. The coordinates of Fig. 2 are given by
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Fig. 1 - Smallest symmetric hexagonal array

Table 1 - Characteristics of Symmetric Hexagonal Arrays

Number of Number of Number of
Rings n Independent Parameters p Elements N

1 1 7
2 3 19
3 5 37
4 8 61
5 11 91
6 15 127
7 19 169
8 24 217
9 29 271

2Q + 1=nodd 2 + 32 + 1 1222 + 182 + 7
2(Q + 1)= n even Q2 + 4Q + 3 12k2 + 302 + 19

" 2 7rs D 
aX X co 8X

and

27rs 5 8
- cA o s 6

where s is the minimum spacing between rows of elements and 8x and 0 are the angles
from the x and y axes respectively.
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Fig. 2 - Pattern-function representation in the uXuY plane

The case treated here is a special case of the classical problem of diffraction from an
infinite regular lattice [)7]. The results of this analysis can be applied to any regular array
lattice through an appropriate affine transformation, as shown by Lo and Lee 18]. However,
any other lattice would sacrifice the symmetry of the hexagonal arrays and equilateral
triangular lattice analyzed in this report.

The grating-lobe pattern of Fig. 2 has the spatial periodicity of the reciprocal lattice
of the antenna array lattice 9] . The coordinates of the grating lobes are

uX(m) = mrv'W

and

u (m, n) 2itn -- 2).
Y ~~~2

The general pattern function for arbitrary excitation has the periodicity of the grating
lobes in the uxuy plane, and the cell defined by the hexagon C1C2 C8C4 C5 C6 completely
describes the function. Furthermore, with the symmetry constraints which we have placed
on the array, 1/12 of the cell, defined by the triangle OCCD, is sufficient to completely
describe the pattern functions with which we are concerned. Also shown in Fig. 2 is a circle
defined by u2 + uY2 = (2irsfXj)2, which represents the boundary of visible space. The radius
of this circle is directly proportional to s, The synthesis procedures considered here address
the hexagonal cell without regard to any limitations imposed by s. That is, pattern functions
are synthesized over the entire cell even though part of the cell could be excluded from
visible space by appropriate selection of s.
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PATTERN CHARACTERISTICS OF SEVEN-ELEMENT ARRAYS

In this section we consider some of the general pattern characteristics of hexagonal
arrays before attempting to synthesize pattern functions. We note at the outset that our
symmetric arrays generate real pattern functions. This is because the projected-line-source
excitation for any plane cut through the center of the array is real and symmetric. Therefore
the corresponding voltage pattern function is also real, as well as symmetric. The complete
pattern function E(uX, u ) is therefore a real function of two variables. It can be visualized
as a surface in three-space: (ux , i , E). The loci of the zeros of E(ux, uy) are sets of curves
on the uXu y plane. This pattern function is not an analytic function of the complex variable
ax + ju , and this limits the range of mathematical techniques which can be applied to the
synthesis problem.

The pattern functions attainable with the seven-element hexagonal array are now
considered. For uniform excitation of all elements of the array the pattern function is

E(ux, a 1 + 4 Ux ccos u + 2 cos (1)

Figure 3 shows computationally convenient pattern-function cuts through the main lobe:
along the x axis, along the y axis, and in the plane containing the line x = 35U. This last
cut is the one for which the projected line source is a uniformly spaced array. The pattern
function for this case is obtained by rotating the u u coordinate system through the
angle tan-1 (VA379 ). This rotation is accomplished by a rotational transformation from
u uy to U, as follows:

ax -uX sin 0 G uy CosO (2a)

and

uy = ux cos 0 - uy sin 0, (2b)

where tan 0 =y'0/9. Setting au = 0 and substituting Eqs. (2) into Eq. (1) yields

, u 2u t~ 3u sin V-7U
E(ux O:) = 1 + 2 cos --- + 2 cos + 2 costY = ,In e. (3)

VT_ Vr7 VI7 .uIsinx

Because the ax axis intersects cells in different ways, the symmetry of the pattern function
allows five subcell cuts to be folded onto a single subcell as shown in Fig. 4. The first three
zeros of Eq. (3) fall at point P, with the result that the lengths of line segments OP, PQRP,
and PSTP are all equal to 2r/Tradians and segment PD is f A/VTradians. The x-axis cut
passes through the center of some cells and along the edge of others; therefore it provides
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(c) Cut along the line x =3V3Y

lig. 3 - Pattern cuts through the main lobe for a uniformly excited seven-element
hexagonal array

6

-0



NRL REPORT 8368
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Fig. 4 - Subcell sampling by the patterns of Fig. 3

two edges of the subcell of Fig. 4, and the y-axis cut provides the other edge. Thus, for the
symmetric array, a relatively small number of pattern-function computations can provide
a reasonably complete description of that function.

The zeros for the three pattern cuts of Fig. 3 are at angular distances from the origin
of 135.18°, 136.07°, and 138.59° for the x-axis, oblique, and y-axis cuts respectively. Thus
the locus of zeros is a near-circular curve surrounding the main lobe. The pattern-function
values at points C1 and D of Figs. 2 and 4, expressed in dB relative to the main lobe value,
are -10.88 dB and -16.90 dB respectively.

We next consider the pattern characteristics of seven-element arrays for which the
center element has unit excitation and the outer elements are excited with amplitude a.
The pattern function is given by

u 2u
E(uX IuY, a) = 1 + a (4 cos cos u + 2 cos 2u (4)

and for values of a less than 1 the main lobe broadens and the locus of zeros moves away
from the main lobe. The zeros for the x-axis cut are given by

and the zeros for the y-axis cut are given by

Cos = I 4a 2. (6)cou = .(6
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Equations (5) and (6) can be examined to establish some limits on the ranges of a which we
will investigate, Zeros for real values of uY are found on the y-axis cuts for a > 1/2 and
a • - 1/6. Zeros are found on the x-axis for a Ž 1/3 and a < - 1/6. For - 1/6 < a < 1/3 the
pattern function has no zeros for real uX or u . These restrictions on ux and uY are simply
due to the pattern function and are unrelated to restrictions on uX and uY which result from
the boundary of the visible region.

Figure 5 illustrates how the locus of zeros moves with variation in the parameter a.
The locus approaches 0 as a -* - 1/6 from below, and it approaches C1 as a - 1/3 from
above. It can be shown that for a near -1/6 (a = -(1/6) - e)

Ux UY t 3x (in radians) (7)

and that for a near 1/3 (a = 1/3 + 5)

Au ± ±vtrt (8)

where ux = 2ir./fW+ Au. Equations (7) and (8) indicate that the locus of zeros becomes
circular in the neighborhoods of 0 and C1.

Other characteristics of the pattern function which are of interest and easily deter-
mined are the pattern values at C1 and D. The pattern values at 0, C1 , and D are

-E 0 i- 6a,

EC = 1 - 3a,
C 1

ED I - 2a.

-4X} -

(9b)

(9c)

Fig. 5 - Locus of zeros for various values of a
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The absolute pattern values at C1 and D are the same and equal to -24.61 dB for
a = 0.4. It was previously stated that the pattern function is a surface in the three-space
(uX, uy, E). For a = 1/3 this surface becomes tangent to the E = 0 plane at C1 and all
similar points. For this case the pattern value at D is -19.08 dB.

SYNTHESIS OF PATT ERN FUNCTIONS BY CONVOLUTION

We now consider hexagonal arrays larger than the seven-element array analyzed in the
previous section. Since the relationship between pattern function and array excitation is a
Fourier transform, the array excitation for a product of pattern functions is the convolution
of the array excitations of the individual pattern functions. The generation of the binomial
distribution is an example of this procedure.

For the linear array the simplest pattern function which places a zero midway between
adjacent grating lobes is

E(u)= cos j (10)

which is obtained from a two-element array with equal excitation. The array illumination is
given mathematically by

d dAfx) = 6(- -2 ) + 6( ' (11)

where d is the element spacing and 6(a) is the Dirac delta function at x = a. Consider Eq.
(10) to be the first pattern function in a set given by

E"(uP=(cos -- ) . (12)

The array illumination for En(u) is obtained recursively by convolving the array
illumination for En (u) with Eq. (11). For example the array illumination for n = 2 is

A 2(x) = 6(-d) + 26(0) + 6(d).

Thus the array illuminations for Eq. (12) are n + 1 element arrays with amplitudes cor-
responding to the binomial coefficients.

Another way of looking at this process, from an antenna point of view, is to consider
that each element of an array is being replaced by an array. For example, if the array is
6(-d/2) + 6(d/2), then each of these elements is replaced by an array, one being 6(-d) + 6(0)
and the other 6(0) + 6(d), and the resulting array is 6(-d) + 26(0) + 6(d).

9
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This convolution procedure can be analogously extended to planar arrays for the
synthesis of pattern functions. For example the pattern function for a symmetric seven-
element array can be expressed as E(ux, uBy, a), from Eq. (4). For a larger hexagonal array
the pattern can be defined as

En(Ux a)9=LEY {u adE".] n(.

The convolution procedure for obtaining the array illumination for the pattern function
given by Eq. (13) for n = 2 and a = 1/3 is illustrated in Fig. 6. The initial array illumination
has been multiplied by 3 to make all amplitudes integer-valued.

The hexagonal array for a = 1/3 is directly analogous to the linear array with binomial-
coefficient illumination in that both have pattern function with zeros as far from the grating
lobes as possible. The array illuminations resulting from the first four convolutions are
shown in Fig. 7. To conserve space, Fig. 7b, 7c, and 7d contain only 1/12 of the array,
which by symmetry defines the entire illumination. This is the synthesis procedure for
hexagonal arrays which have zero degrees of freedom. Once we have selected n, or in effect
the number of elements in the array, we have determined the array illumination. In addition

0 3(3IO

Fig. 6 - Generation of a 19-element array
by replacing each element of a seven-ele-
ment array with a seven-element array
(a = 113)
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I'

(a) O = 2 and N = 19 (b) n = 3 and N = 37

00(

(c) n = 4 and N= 61 (d) n = 5 and N = 91

Fig. 7 - Array excitations for n - 2
through 5 for a = 1/3

to locating all zeros at the corners of the pattern-function cells as defined in Fig. 2 (point
C1 and all similar points), these arrays produce pattern levels at the midpoints of the sides
of the cells (such as point D) which are given by

IEn(D, a = 1/3)/En(OI a = 1/3)12 = -16.90n dB,

where n is the number of hexagonal rings in the array.

11
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The generation of linear arrays with illuminations equal to the binomial coefficients is
directly related to Pascal's triangle, in which each number in any given row is obtained by
adding the two numbers in the row above to the right and left of the given number.
Analogously we can generate a pyramid of numbers, each layer of which is the appropriate
illumination for a hexagonal array with a = 1/3. The generating algorithm for these Pascal-
like pyramids is as follows: The value of an element is the sum of three times the value of
the element directly above in the layer above and the values of the six next-nearest elements
in the layer above. The pyramid has six sides, each of which is a Pascal triangle.

SYNTHESIS OF PATTERN FUNCTIONS WITH ONE DEGREE OF FREEDOM

In the synthesis procedure described in the preceding section, the pattern function
was defined by Eq. (13) with a = 1/3. It is apparent that the number of degrees of freedom
in the synthesis procedure can be increased from zero to one by allowing a to assume other
values.

From Eqs. (9) the power levels at points C1 and D relative to the level at point 0 are
given for the seven-element array by

Pc~Z)= I__aI2p (a) <l_3 

and

t)( ) | 1- 2a 12PD (a) =l __6a

For larger hexagonal arrays, in which the array illumination is obtained by multiply Con-
volving the illumination of the seven-element array, the power levels are given by

P (a n) f j l 2n (14a)

and

PD (Xn) 1 +6l (14b)

where n is again the number of hexagonal rings in the array.

A straightforward one-parameter synthesis procedure for specified sidelobe level can
be carried out using Eqs. (14). Once the size of the array is specified, the maximum allow-
able power level at point Cl or D is selected, and the value of a is determined from which-

12
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ever of Eqs. (14) gives the larger power level. As an example, for n. = 3 and a maximum
power level of -28.63 dB (-20 log 33), it is found from the equation forPc 1 that a = 4/15
and 4/3; and it is found from the equation for PD that a = 1/6 and a. Figure 5 shows that
for a = 1/6 and 4/15 the pattern function has no zeros. Therefore these solutions are set
aside for the moment. For a = a° PC1 = -18.06 dB; so this solution is rejected. For a = 4/3,
PD = -43.94 dB; and this is the desired solution. The array illumination for this case is
obtained by convolution, and the amplitudes of the elements in 1/12 of the 37-element
array are shown in Fig. 8a.

This synthesis procedure produces the designed power level or less at the edges of the
hexagonal pattern function cell (C1 C2C3C4C5 C6 in Fig. 2). The synthesis is applicable
provided that the designed power level is no less than -24.61n dB.

Array illuminations are also shown in Fig. 8 for 19-element and 61-element arrays for
the design requirement of -28.63 dB maximum power level at the edge of the pattern cell.
In each case a different value of a is found, and, as was indicated, a seven-element array
with this power level cannot be synthesized.

DISCUSSION

As was stated in the introduction, the objective in this report has been to establish a
starting point for pattern synthesis of hexagonal arrays. The synthesis procedures described
here have relied on pattern multiplication and corresponding convolution of array illumina-
tions. Pattern-function control has been achieved only at the edge of the hexagonal pattern-
function cell.

I /

I06

(a) n 3, N= 37,
and a = 4/3

I /

(b) n = 2,
N = 19, and
a = 0.6462

16 1to10
I,

(C) n = 4, N = 61,
and a - 3.9111

Fig. 8 - Array illuminations for a power level < -28.63 dB
(-20 log 33) at the edge of a pattern cell
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The procedure with zero degrees of freedom generates a set of pattern functions which
have zero values only at the corners of the pattern cells. Figure 7 shows that the array
illuminations for this case are strongly tapered (56.1 dB from center to corner for the 61-
element array), and the practical utility of such arrays is minimal.

The procedure with one degree of freedom allows us to specify a maximum power
level at the edge of the pattern function. In addition to the added degree of pattern control,
the array illuminations for this case are less strongly tapered than in the procedure with
zero degrees of freedom. However, the illumination taper is still sufficiently large (40.4 dB
from center to corner for the 61-element array in the example) and the degree of pattern
control is sufficiently small that this procedure will not find significant practical application
either.

However, the synthesis techniques described here do represent a starting point for the
development of more powerful procedures, and it is expected that more general procedures
with a larger number of degrees of freedom will evolve from these concepts.
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